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GLOBAL ENERGY BALANCE

Global and annual average energy fluxes in watts per square meter
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ATMOSPHERIC
RADIATION

Energy per area per
time

Power per area

Unit:
Watt per square meter
W m2




STEFAN - BOLTZMANN RADIATION LAW

Emitted thermal radiative flux from a black body

Temperature, °K
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Stefan-Boltzmann law “converts” temperature to radiative flux.



RADIATIVE FORCING

A change 1n a radiative flux term in Earth’s radiation
budget, AF, W m™2.

Working hypothesis:
On a global basis radiative forcings are additive and

fungible.
e This hypothesis 1s fundamental to the radiative
forcing concept.

e This hypothesis underlies much of the assessment of
climate change over the industrial period.



ATMOSPHERIC CARBON DIOXIDE IS INCREASING
380

370 — ‘ : :

360 |- oo |~ Mauna Loa Hawaii /|
E 340 - 340 - 1:25
Q 330 103
3 320 3201M/W s 10.8 .
C 310 ‘ | | C. D.‘Keellng 70 6 E
9 300 L 1960 1970 1980 1990 2000 70:4 3'{)
Q \v/ 0.2
E2B0L LMo PR e oy 0
O 260 |-
o - A Law Dome
O 240 |- .
S Polar ice cores -« v Adelie Land
S 220 | ¢ Siple

200 |- \ ® South Pole

1 80 | | | | |

800 1000 1200 1400 1600 1800 2000

Year
Global carbon dioxide concentration and infrared radiative forcing

over the last thousand years



Unknown



INCREASES IN CO7 OVER THE
INDUSTRIAL PERIOD



ATMOSPHERIC CARBON DIOXIDE
Time series 1700 - 2003
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ATMOSPHERIC CO, EMISSIONS
Time series 1700 - 2003
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ATMOSPHERIC CARBON DIOXIDE
Time series 1700 - 2003
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ATMOSPHERIC CARBON DIOXIDE
Time series 1700 - 2003
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ATMOSPHERIC CARBON DIOXIDE
Time series 1700 - 2003
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DEFORESTATION AS A SOURCE OF
ATMOSPHERIC CO2




ATMOSPHERIC CO7 EMISSIONS
Land-use changes 1850 - 2000
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Carbon flux estimated as land area times carbon emissions associated with
deforestation (or uptake associated with afforestation).

United States dominates emissions before 1900 and uptake after 1940.



ATMOSPHERIC CO, EMISSIONS
Time series 1700 - 2003
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Prior to 1910 COz emissions from land use changes were dominant.

Subsequently fossil fuel CO2 has been dominant and rapidly increasing!



ATTRIBUTION OF INCREASE IN
ATMOSPHERIC CO2

Comparison of cumulative CO2 emissions from fossil fuel combustion and
land use changes with measured increases in atmospheric COo.
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emissions from land use changes, not fossil fuel combustion.



FRACTION OF EMITTED CO»
REMAINING IN THE ATMOSPHERE

Excess atmospheric CO7 (relative to 1850) as fraction of
cumulative emissions from 1850.
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Is the atmospheric CO7 fraction increasing?

What are the implications for future CO3?



THE CARBON CYCLE

Storage in gigatons; fluxes in gigatons per year
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earthobservatory.nasa.gov/Library/CarbonCycle/carbon_cycle4.html
Net change 1n atmosphere 1s difference of large fluxes.
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CLIMATE FORCING
AND RESPONSE



GREENHOUSE GAS FORCING 1855-2004

Well mixed greenhouse gases: carb
dioxide, methane, nitrous oxide, CF(
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Well mixed greenhouse gases: carbon dioxide, methane, nitrous oxide, CFC's


Temperature Anomaly, K

GREENHOUSE GAS FORCING AND

CHANGE IN GLOBAL MEAN SURFACE
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GREENHOUSE GASES AND TEMPERATURE
OVER 450,000 YEARS [\
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CLIMATE RESPONSE

The change in global and annual mean temperature,
AT, K, resulting from a given radiative forcing.

Working hypothesis:
The change in global mean temperature is
proportional to the forcing, but independent of its
nature and spatial distribution.

AT = A AF



CLIMATE SENSITIVITY

The change 1n global and annual mean temperature per
unit forcing, A, K/(W m-2),

A= AT/AF.

Climate sensitivity 1s not known and is the objective of
much current research on climate change.

Climate sensitivity 1s often expressed as the
temperature for doubled CO» concentration AT9x.

ATry = A AF>«



CLIMATE SENSITIVITY ESTIMATES
THROUGH THE AGES

Estimates of central value and uncertainty range from major
national and international assessments

Carbon Dioxide and Climate:

A Scientific Assessment
NATIONAL ACADEMY OF SCIENCES
Washington, D.C. 1979
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Despite extensive research, climate sensitivity remains highly uncertain.



THE ‘BIBLE’ OF CLIMATE CHANGE
It's big and thick.
Every household should have one. EFEiSu.
No one reads it from cover to cover. R

You can open it up on any page
and find something interesting.

It was written by a committee.
It is full of internal contradictions.

It deals with cataclysmic events such as
floods and droughts.

It has its true believers and its rabid skeptics.
http://ipcc-wgl.ucar.edu/wgl/wgl-report.htr



Unknown
http://ipcc-wg1.ucar.edu/wg1/wg1-report.html


IMPLICATIONS OF UNCERTAINTY IN
CLIMATE SENSITIVITY

Uncertainty in climate sensitivity translates directly
into . . .

e Uncertainty in the amount of incremental
atmospheric CQO; that would result in a given
increase 1n global mean surface temperature.

e Uncertainty in the amount of fossil fuel carbon that
can be combusted consonant with a given climate
effect.

At present this uncertainty is about a factor of 3.



KEY APPROACHES TO DETERMINING
CLIMATE SENSITIVITY

e Paleoclimate studies.

e Empirical, from climate change over the instrumental
record.

e Climate modeling.

Climate models evaluated by comparison with
observations are essential to informed decision making.



IMPORTANCE OF KNOWLEDGE OF
CLIMATE TO INFORMED
DECISION MAKING

e The lifetime of incremental atmospheric CO; 1s about
100 years.

* The expected life of a new coal-fired power plant 1s
50 to 75 years.

Actions taken today will have long-lasting effects.

Early knowledge of climate sensitivity can result in
huge averted costs.



INFLUENCE OF AEROSOLS
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AEROSOL IN MEXICO CITY BASIN




AEROSOL IN MEXICO CITY BASIN

Mexico City 1s a wonderful place to study aerosol properties and evolution.



AEROSOLS AS SEEN FROM SPACE

Fire plumes from southern Mexico transported north into Gulf of Mexico.




AEROSOL.: A suspension of particles in air
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" 2001-04-22-17:28
SeaWiF'§ Project, NASA/Goddard Space Flight Center, and ORBIMAGE

Atmospheric aerosols may result from primary emissions (dust, smoke)
or from gas to particle conversion in the atmosphere (haze, smog).



CLOUD BRIGHTENING BY SHIP TRACKS

Satelhte photo off Cahforma coast
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ESTIMATES OF AEROSOL DIRECT FORCING

By linear model and by radiation transfer modeling
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In continental U. S. typical aerosol optical thickness is 0.1: 3 W m-2 cooling.
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AEROSOL OPTICAL DEPTH

Determination by sun photometry

Beer’s law in the atmosphere:

Eq., = Eoe—f/cos(Go)

T = —cos(@o)ln( Ed-n )
1y

T ="Tgas * Taerosol

Taerosol = T~ Tgas
Tgas Calculated from known
properties of air



AEROSOL OPTICAL DEPTH

Determined by sunphotometry
North central Oklahoma - Daily average at 500 nm

— e e e e e e — ]

. e U L . R L P g — A, — — — — — —]

PO U U N U L I o — = =

e L N -

—_—— e e e e e e e e e e e e e 2L T —— — & aa.=

e e e e e e e e e —m L e ]

T S < e P

—_——— e e e e e e e e e e e e e e e e e YA A e e - = — A

00 G20 020 ¢SO0 OF0 ¢So0o0 00
yidep [eondo |osolay

2002 2003

1993 1994 1995 1996 1997 1998 1999 2000 2001

J. Michalsky et al., JGR, 2001



MONTHLY AVERAGE AEROSOL JUNE 1997

Polder radiometer on Adeos satellite
Optical Thickness 7
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AEROSOL OPTICAL DEPTH IN 18 MODELS
(AEROCOM)

Comparison also with surface and satellite observations
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Kinne et al., ACP, 2006
Surface measurements: AERONET network.

Satellite measurements: composite from multiple instruments/platforms.
Are the models getting the “right” answer for the wrong reason?

Are the models getting the “right” answer because the answer 1s known?
Are the satellites getting the “right” answer because the answer 1s known?



SENSITIVITY OF ALBEDO AND FORCING
TO CLOUD DROP CONCENTRATION
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Indirect forcing is highly sensitive to perturbations in cloud drop
concentration.

A 30% increase in cloud drop concentration results in a forcing of ~1 W m2.



UNCERTAINTY IN CLIMATE
FORCING



GLOBAL-MEAN RADIATIVE FORCINGS (RF)

Pre-industrial to present (Intergovernmental Panel on Climate Change, 2007)
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TOO ROSY A PICTURE?

Ensemble of 58 model runs with 14 global climate models

—
& I I
o\« models using only natural forcings
% models using both natural and anthropogenic forcings
E 1 - O [ smssmmm observations N
o i
% 'L SCIENCE BASIS
1
-
wid
<
o 0.0 —
Q.
5
- I |
1900 1950 2000

¢ ¢ Simulations that incorporate anthropogenic forcings, including increasing
greenhouse gas concentrations and the effects of aerosols, and that also
incorporate natural external forcings provide a consistent explanation of the
observed temperature record.

¢ ¢ These simulations used models with different climate sensitivities, rates of
ocean heat uptake and magnitudes and types of forcings.



TOO ROSY A PICTURE?

Ensemble of 58 model runs with 14 global climate models
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Schwartz, Charlson & Rodhe, Nature Reports — Climate Change, 2007

Uncertainty in modeled temperature increase — less than a factor of 2, red —
is well less than uncertainty in forcing — a factor of 4, green.



TOO ROSY A PICTURE?

Ensemble of 58 model runs with 14 global climate models
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Schwartz, Charlson & Rodhe, Nature Reports — Climate Change, 2007

The models did not span the full range of the uncertainty and/or . . .

The forcings used in the model runs were anticorrelated with the
sensitivities of the models.



CORRELATION OF AEROSOL FORCING, TOTAL
FORCING, AND SENSITIVITY IN CLIMATE MODELS

Eleven models used in 2007 IPCC analysis
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Total forcing increases with decreasing (negative) aerosol forcing.

Climate models with higher sensitivity have lower total forcing.
These models cannot all be correct.

This situation limits confidence that can be placed in the models
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Looking to the
Future . . .




Prediction is difficult,
especially about the future.
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PROJECTIONS OF FUTURE CO2 EMISSIONS

CO5 emissions (Gt Clyr)
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PROJECTIONS OF FUTURE CO2 EMISSIONS


PROJECTIONS OF FUTURE CO2 CONCENTRATIONS
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PROJECTIONS OF FUTURE CO2 CONCENTRATIONS


Temperature Change (°C)

PROJECTIONS OF FUTURE TEMPERATURE CHANGE
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PROJECTIONS OF FUTURE TEMPERATURE CHANGE


Sea level rise (metres)
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PROJECTIONS OF FUTURE SEA LEVEL RISE
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Thermosteric (density change) only


Weiss and Overpeck, University of Arizc
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Weiss and Overpeck, University of Arizc
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MELTING OF GREENLAND ICE CAP

Satellite determination of extent of glacial ice 1992 vs 2002

NASA Arctic Climate Impact Assessment, Cambridge, 2004

Complete melt of the Greenland ice sheet would raise the level of the
global ocean 7 meters.
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“Gentlemen, it’s time we gave some serious thought

to the effects of global warming.”



CONCLUDING REMARKS

Atmospheric carbon dioxide will continue to increase
absent major changes in the world’s energy economy.

The consequences of this increase are not well known but
they range from serious to severe to catastrophic.

Uncertainty in forcing by aerosols greatly limits present
understanding of climate change.

Present scientific understanding 1s sufficient to permit “no
regrets” decision making.

Research 1s urgently needed to refine “what 1f”” projections.

Actions taken (or not taken) today will inevitably affect
future generations.





